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Abstract-The step response of a single-pass crossflow heat exchanger is investigated. The two-dimensional 
transient temperature distributions in the core wall and in both the unmixed fluids are analytically 
determined, considering finite wall heat capacity (i.e. finite propagation speed of disturbances). The 
solutions are deduced by the local energy balance equations, resorting to the Green functions and to a 
threefold Laplace transform. The dimensionless temperatures are presented in terms of the governing 
parameters (number of transfer units, capacity ratios, heat transfer resistance ratio). Assuming constant 
initial conditions and entrance temperature of the hot fluid subjected to a sudden step increase, the transient 
temperature field is computed with extremely low computational time ; the results are plotted for a wide 

range of the governing parameters. 

INTRODUCTION 

MORE DETAILED and accurate investigations about 
the knowledge of the transient fluid temperature 
distribution inside heat exchangers are required 
nowadays, to provide correct evaluation of thermal 
and structural performances. Recently, problems 
related to crossflow heat exchangers have increased 
their relevance in several advanced industrial appli- 
cations (gas turbine regenerators, air-sodium units 
in nuclear engineering, ceramic exchangers, chemical 
engineering, food processing, cryogenics). Any vari- 
ation in the working conditions, either intentional or 
accidental, produces a perturbation which propagates 
all over the heat exchanger, with important conse- 
quences for control devices of fluid regulation. The 
time lag associated with the fluid response to per- 
turbation can be an interesting parameter for per- 
formance considerations and safety requirements. 

In the last few years many authors have focused 
their interest on searching for analytical solutions 
of the crossflow heat exchanger problem. While the 
steady-state solution is now well established [ 11, only 
recently the general transient problem has been 
tackled with analytical methods. In the past some 
authors obtained numerical [2] or analytical solutions 
[3], but were restricted to simplified hypotheses such 
as large wall capacitance (i.e. infinite velocity of 
propagation of any disturbance) and determination 
of the mixed mean exit temperatures only. A more 
general analytical solution, dealing with different 
kinds of perturbation, is given, but still for large wall 
capacitance, in refs. [4, 51, where a more exhaustive 
discussion about previous literature can be found. 
Only very recently an improved solution for the com- 

plete mathematical model, taking account of the finite 
wall heat capacity, has been worked out in ref. [6], 
but solutions are presented only for a delta-like pulse. 

This paper is aimed at reporting on the exact ana- 
lytical solution for the transient two-dimensional tem- 
perature distributions in crossflow heat exchangers, 
following a step change in the inlet temperature of the 
hot fluid. The availability of these analytical solutions 
can reduce the need of scale model testing (sometimes 
prohibitively expensive) and constitutes an accurate 
benchmark for the validation of computer codes. The 
solutions are expressed as integrals of the Green func- 
tions, and involve modified Bessel functions. The 
influence of the governing physical parameters is 
appropriately commented on. 

ASSUMPTIONS AND FUNDAMENTAL 

EQUATIONS 

The theoretical analysis is based on the classical 
assumptions adopted for the description of direct 
transfer, single-pass crossflow heat exchangers, with 
walls separating the two fluid streams (flowing at right 
angles). The investigation is carried out according to 
the following hypotheses : 

(a) both fluids are unmixed (as well known, the 
assumption of one fluid mixed introduces a strong 
simplification of the problem) ; 

(b) all the physical properties and the fluid capacity 
rates are constant ; 

(c) the exchanger shell or shroud is adiabatic ; 
(d) the mass velocities at the entrance of the heat 

exchanger on each side are constant and change of 
flow distribution is neglected ; 
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NOMENCLATURE 

A heat transfer surface [m’] V heat capacity ratio 
c specific heat at constant pressure X, y dimensionless space variables. 

[J kg-’ K- ‘1 
E flow capacitance ratio Greek symbols 
G(.) Green function I’ incomplete gamma function 
h heat transfer coefficient [W mm2 K- ‘1 6(.) Dirac delta function 
I(.) modified Bessel function of the first kind 0 temperature [K] 
L exchanger length [m] 0, initial temperature of the whole unit [K] 
s;P Laplace operator A0 step increase in the inlet temperature of the 
m mass flow rate [kg s- ‘1 hot fluid [K] 
M mass of the exchanger [kg] 5, q space variables [m] 
N dimensionless exchanger length T time variable [s] 
NTU number of transfer units cp primary fluid inlet temperature [K]. 
R heat transfer resistance ratio 
s, p, q Laplace transform variables Subscripts 
t dimensionless time variable primary (hot) fluid 
T dimensionless temperature “b secondary (cold) fluid 
u fluid velocity [m s- ‘1 i general label 
U(.) Heaviside step function W solid wall. 

(e) axial heat conduction is negligible ; on a fundamental relevance, since they are associated 
(f) the geometrical configuration is constant to the finite propagation speed of disturbances, namely 

throughout the exchanger ; 

(g) the inlet temperature of the unstepped fluid is 
constant and equal to the initial temperature of the 
whole unit ; 

(h) the thermal conductances on both sides are 
constant and inclusive of wall thermal resistance and 
fouling. 

This last hypothesis implies that the wall temperatures 
are the same on both sides, even if the thermal con- 
ductivity of the exchanger core is finite. However, the 
heat transfer balance between the fluids is fulfilled, 
since the fluid-wall thermal conductances are appro- 
priately reduced to account for the core thermal resist- 
ance and the fouling factor. 

The five dimensionless physical parameters typical 
of steady-state heat transfer phenomena in heat ex- 
changers are 

E = (mc)&mc),, R = @A ),/@A),, 

Ni = (hA )/(mc), i=a,b 

NTU = {(m&,,#l(hA),+ ~lWh,l) ‘. (1) 

Of course only two of them are independent since 

RN, = EN, 

N, = ENTU(I +R)/R and N,, = (1+ R)NTU 

ifE< 1 

N, = NTU( 1 + R)/R and N,, = NTU( 1-t R)/E 

ifE> 1. 

For transient phenomena two more parameters take 

V, = L,(mc)$Mc,u, i = a, b. (2) 

Moreover, it is suitable to introduce the following 
dimensionless variables : 

x = 5W MmW,, Y = MA hlW%Lb 

t = z(hA),/Mc,, T, = (0, -@,)/A@ i = a, b, w 

(3) 

where the constant A0 is some typical or averaged 
value of O,(O, y, t) - Oo. The governing differential 
equations, expressing conservation of energy in a con- 
trol volume for wall and fluids, are 

aT, 
at +(1 +R)Tw = T,+RT, 

(4) 

for t > 0, 0 < x < N,, 0 < y < N,,. Having in mind 
here only perturbations induced by a sudden variation 
of the primary fluid inlet temperature, the initial and 
boundary conditions upon which equations (4) must 
be solved will be prescribed as 

T&Y, 0) = 0 i = a, b, w 

Ta(O,y, t) = cp(ya t) 

Tb(x, 0, t) = 0. (5) 

The step response (in which O,(O, y, t) - 0, is actually 
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a constant) is easily reproduced by setting cp(y, t) = 1. 
The temperature fields obtained in this latter important 
case will simulate the sudden startup of the exchanger, 
and the transient regime taking place before the 
steady-state operating conditions are reached. 

ANALYTICAL SOLUTION 

The linearity of the problem allows the introduction 
of the Green’s functions Gi(x, y, t), solving the same 
set of differential equations, equation (4), as the 
sought temperatures Ti(x, y, t), but with initial bound- 
ary conditions 

G;(x,.Y, 0) = 0 i = a, b, w 

G,(O,y, t) = XMt) 

G,(x, 0, t) = 0. (6) 

The Green’s functions Gi provide the solution for 
the temperature fields induced by any inlet datum by 
means of the convolution integrals 

? I 
~‘L(x,Y, 0 = 

s i 
dy’ G,(x, y’, t’)rp(y-y’, t-t’) dt’. 

cl 0 

(7) 

Taking a threefold Laplace transform with respect to 
t, X, y with complex parameters s,p, q, respectively, 
and defining 

G:“(P, 4, s) = ~&!‘y~,[Gi(-~ 01 

s 

Cc 

s 

%I 
= exp ( - st) dt exp (-RX) dx 

0 n 

leads to the set of algebraic equations for Gy 

r (S$_R+l)~~~,q,S)-G~(P.q,S)-RG~(p,q,s) = 0 

I ~++~s+l)G~@,q,s)--~OI,q,s) = 1 

(q+ 1 + VrJ/R)G:‘(p, q, s) - CXp, q, s) = 0 

(9) 

whose solution is 

G;(p,q,s) = (q+ 1+ V’$lw%Q,q,s) 

G,“‘(p,q,s) = [(f+R+ l)(q+ 1+ vbs/& 

- RIGYP, 47 d 

G;(p,q,s) = [(s+R+ l&S v,s+ 1) 
(10) 

x (q f 1 -I- P-&R) - (q f I+ v&R) 

- R(p+ V,s+ I)]- ‘. 1 
The problem is thus reduced to a threefold Laplace 
inversion of equations (10). The first inverse trans- 
form with respect to p is simply a matter of residue 
calculation and yields 

G’L(x,q,s) = (s+r+l)-’ q+;s+*-s+y 

[ c 

1 
x exp --x V*s+l------ 

s+R+l 1 

R 

( 
q+!$+l_-R 

-I- 

+X(s+R+I)2 s+R+l ).1 
. fill) 

Further inversion with respect to the variables q and 
s require the formulae [7] 

2; I bp G?q~lql = loP@~) L/21 

9; ’ 
( 

f exp [(k+h)/s]Zo[2(kh) ““is] 
I 

= Zo[2(kt) “2]ZO[2(/7t) “Z] (12) 

and some standard properties of the Y operator. One 
obtains, after a little algebra 

Gbfx,y, t) = lJ(t- VJ- V,y/R)exp[-x-y 

-(l+R) (t- Vax- J,‘,y,‘R)] 

1,[2.~“~(t-- V,x- ~~y/R~1’2]Zo[2R”2~“2(~- V,x 

- V,Y/R)“~] (13a) 

where the unit step function U takes the finite propa- 
gation speed of disturbances in the exchanger into 
account. Analogous steps are in order for i = a, w; 
the final results are 

G,(x,y,t) =exp(-.~)6(y)6(t-V~x)+U(t-V,x) 

x exp[-x-(l+R)(t- V,x)] & 
112 

C > 

x z,[2x”*(t- V*x) “*]s(y) + U(f - v,x 

-Vby/R)(Rx/y)“2exp~-x-y-(1+R)(t-Vax 

- V,y/R)]Z,[2x”‘(t- V,x- V,,y/R)“2]Z,[2R”2y”2 

x (t- Y,x- Vby/R)“Z] (13b) 

G,(x,y,t)= U(t-V,x)exp[-x-(l+R)(t-V&x)] 

x z,[2x”2(t- VJ) “2]s( y) + U(r- Vax 

- V,,y/R) (R/y)‘j2(t- V,x- V,y/R)“‘exp[-x-y 

-(l +R) (t- V,x- V,y/R)]1,[2~“~(t- I’,.~ 

- Vby/R)“2]Z,[2R’i2y”2(t- Vax- Vby/R)“‘]. (134 

The solution to the general problem is now given by 
equations (7) and (13). The step response is easily 
obtained by putting v, = 1 in equation (7), and 
becomes explicitly, for the hot fluid 

T,(x,y,t) = exp(-x)U(t-V,x) 
{ 

1 

s 

,;I2 
+ exp[-(1 +R)(t’- V,xll Z,[2x”’ 

V&X. 
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x (t’- V,x)“2]dt’+(Rx)“2 
s 

exp[-(l+R) 
“A ’ 

I* 
x (t’ - I’&] dt’ 

s 
exp { - [I - V,( I + R)/R] y’} 

0 

XY ‘-~ “2[,[2x’:2(t’_ vax-_ V,y’!R)‘~‘]1,[2R”‘l,“‘2 

x (t’- V,x- V,y’/R) ‘I”] dy’ 
i 

(14a) 

for the cold fluid 

T&x, y, t) = exp ( -x) U(t - V,x) 
s 

exp[-(l+R) 
v, v 

(a) 

0.3-y 
E=R=NTU= 1 

0.25-z 
t=2.5 

0.2-- 

t=2.1 
0.15 

0 
I 

0.5 1 1.5 y 2 

I 
)‘* 

x (t’ - Vax)] dt’ exp { - [ 1 - V,,(l + R)/R]y’} 
0 

x 1,[2x”‘(t’- V,x- V&R)’ ‘]1,[2R”ff’~’ 

x (t’- V,s- V,,y’/R)“2]dy’ (14b) 

and for the core wall 

T,(x, y, t) = exp ( -x) U( t - V,,x) 

X 

IS 

exp[-(1 +R)(r’- V,x)]Z,[2x”‘(t’- Fax)“2]dt’ 
“,< x 

1,. 
+ 

s 
exp[-(l+R)(t’-V,x)]dt’ 

s 
exp{ - [1 v4, 0 

(b) 

Y’Nb 

Va=%=l 

E=R=NTU= 1 

FIG. I. Fluid temperatures at the outlet sections vs space variable for different values of time when 

E=R=NTU=l,V,=V,=l. 
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J+R=~=l 
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0.25- 
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0.15i 0 0.5 4 1 o-l 1.5 

Y 
2 i 

0 0.5 1 1.5 
x 

2 

FIG. 2. Fluid temperatures at the outlet sections vs space variable for different values of time when 
E=R=NTU=l, V,= V,=O. 
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- vt4 1+ m/RI Y’> 
[ 

R(l’- V,x)- vby’ I’* 

Y’ I 
x z0[2x”2(t’- Vax- V,y’/R) “2]1,[2R”*y”‘* 

x (t’- V,x- V,y’/R)“*]dy’ 
> 

(14c) 

where 

y* = min[y,R(t’-Vax)/V,]. (15) 

Equation (14) constitutes the exact analytical solution 
in terms of integrals of modified Bessel functions. The 

(4 

E=R=~=l 

t=250 

t=220 

t=210 
0.35-- 

0.3 t=201 

0.2% 

0.2-- 

t=200.1 
0.15, 

0 
I 

0.5 1 1.5 Y 2 

(4 lb) 

meaning of y* in connection with propagations in the 
y-direction at a speed R/I/, has been discussed already 
in ref. [6]. Propagation in the x-direction at a speed 

of l/V, is apparent from equations (14) themselves, 
where temperatures depend on time only via the com- 
bination t- V,x. The double integration required by 
the explicit solutions (14) does not present technical 

problems because the integrands are bounded con- 
tinuous functions of all variables. 

RESULTS 

The numerical results have been obtained on a 

Toshiba 3100e personal computer, working in double 

(b) 

Y=Nb 

V,=~=lOO 

E=R=NTtJ=1 

FIG. 3. Fluid temperatures at the outlet sections vs space variable for different values of time when 
E=R=NTU=l,V,=V,=lOO. 

0. 

5% 
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L - 

E=R+‘T(J=V,=l 
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0.4 
‘IJ “*“- 

0. 

0.2-- 

t=2.1 
0.15, I 

0 0.5 1 1.5 Y 2 

FIG. 4. T, at x = N, YS y for different values of time when E = R = NTU = V, = 1 : (a) V, = 0.01 ; 
(b) Vb = 10. 
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(4 
0.7- 

Tb 
r=N,, 

0 I 
0 0.5 1 1.5 x 2 

lb) 

0 0.5 1 1.5 x 2 

FIG. 5. 7’, at .r = iv, vs x for different values of time when E = R = XTU = Vb = 1: (a) V, = 0.01; 
(b) V, = IO. 

precision. The integration involved in equations (14) 
has been accomplished numerically by the IMSL 
routines DQDAG and DTWODQ (using a globally 
adaptive scheme based on Gauss-Kronrod rules, with 
7-15 points and a relative accuracy of IO- 3 [S]). The 
results are plotted in some graphs ; every graph con- 
tains several curves, each of them is made of 5 1 points. 
In spite of the double precision, the high accuracy and 
the numerous temperature values required, the CPU 
time for every figure is of the order of some hours on 
a very simple personal computer. 

Figures l-5 give a few examples of the several cases 
that have been run. As expected, the limiting results 
for Vai,, Vr, + 0, and for t + co, reproduce exactly those 
relevant to vanishing heat capacity ratios [S], and 
to steady-state operating conditions [I], respectively. 
Since the effects of heat capacity ratios seem to be 
the most important in the present time-dependent 
context, only their variations will be discussed in this 
paper, whereas the other physical parameters, i.e. E, 

R and NTU, will be kept constant and equal to unity. 
This implies in particuar N, = Nb = 2 for the dimen- 
sionless lengths. The perturbation produced by the 
step entry reaches the exit section of the hot fluid at a 
time V,Na and then temperature increases, more 
slowly near the section J’ = 0 where the cold fluid 
enters, and approaches the steady-state profile. The 
unstepped fluid increases its temperature continu- 
ously, more rapidly near the section .Y = 0, where the 
hot fluid enters ; the wave front propagates all over 
the .x-axis, reaching the section .X = t/V, at time t. 
Figure 1, where V:, = V,, = 1, shows T, vs ,V at x = Na, 
and analogously T,, vs x at y = N,,, for different times. 
This will be used as a reference case ; notice the 
approach towards equilibrium when t increases. In 
Fig. 2 the same temperature profiles are plotted in the 
limiting case V, = V,, = 0; now the infinite propa- 

gation speed of disturbances makes the approach to 
equilibrium faster and smoother. A comparison can 
be done with the step response dealt with in ref. [5] ; 
the numerical values related in Fig. 2 are coincident 
with those presented in Figs. 1 and 2 of ref. [5], for 
NTU = I. The opposite effect of a very slow propa- 
gation speed can be seen in Fig. 3, which is arranged 
like the previous ones, but with V, = I’,, = 100. Here 
the final steady state is approached very slowly 
(roughly speaking, there is a factor of 100 with respect 
to Fig. l), and in a quite non-uniform way along the 
considered sections. In Fig. 4 all parameters are the 
same as in Fig. 1, except Vr, which is taken equai to 
either 0.01 or 10. Only the propagation speed along 
the y-axis has been changed. This can be seen by 
comparison of the T;, profiles to the one of Fig. 1 (a) ; 
when variations travel faster in the y-direction, T, 

increases at about the same rate for y close to 0 as for 
y close to Nb, whilst in the opposite case the tail at 
large y follows with considerable delay the increase at 
y = 0. Figure 5 shows finally the temperature r,, with 
either I<, = 0.01 or 10, the other parameters being the 
same as in Fig. 1, so that only the speed of propagation 
in the x-direction is different. With reference to Fig. 
I(b), the comment is, mutatis mutandis, the same as 
for Fig. 4. Notice in particular the presence of well- 
defined wavefronts for the values of t shown in the 
case of Fig. 5(b). 

The main contribution of this paper consists in 
making available the exact two-dimensional tem- 
perature profiles in the single-pass crossflow heat 
exchanger. As its implication, mean temperatures and 
performance can be easily estimated, giving the 
designer useful information about surface area, con- 
figuration, and working parameters. Another mean- 
ingful practical, significance and application of the 
solution resides in the possibility of carrying out a 
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very detailed stress analysis, mainly concerning either 

the differential thermal expansion along both x- and 3. 

y-axes, or the related thermal stresses. 
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REPONSE A UN ECHELON POUR UN ECHANGEUR THERMIQUE CROISE AVEC 
CAPACITANCE FINIE DE PAR01 

Rbumb-On etudie la rtponse a un echelon pour un Bchangeur thermique croise a une seule passe. Les 
distributions variables et bidimensionnelles de temperature de la paroi et des fluides non melanges sont 
determinees analytiquement en considerant une capacite thermique finie de la paroi (c’est-a-dire une vitesse 
finie de propagation des perturbations). Les solutions sont diduites des equations de bilan local d’tnergie 
a l’aide des fonctions de Green et dune transformation de Laplace. Les temperatures adimensionnelles 
sont presentees en fonction des paramttres (nombre d’unitts de transfert, rapport des capacitts, rapport 
des resistances thermiques). En supposant des conditions initiales constantes et une temperature d’entree 
du fluide chaud soumise a un accroissement brusque en echelon, le champ de temperature variable est 
calcule avec un temps de calcul extremement faible ; les resultats sont donnts pour un large domaine des 

paramttres actifs. 

SPRUNGANTWORT EINES KREUZSTROM-WARMEUBERTRAGERS MIT 
ENDLICHER WARMEKAPAZITAT DER WANDUNGEN 

Zusarnmenfassuog-Die Sprungantwort eines eingiingigen Kreuzstrom-Wiirmeiibertragers wird unter- 
sucht. Die zweidimensionale instationlre Temperaturverteilung in der Wand und in beiden Fluidstrijmen, 
in denen keine Vermischung zugelassen wird, werden analytisch bestimmt. Dies geschieht unter Bertick- 
sichtigung der Wlrmekapazitlt der Wand, was einer endlichen Ausbreitungsgeschwindigkeit von 
Stiirungen entspricht. Die Liisungen werden mit Hilfe von iirtlichen Energiebilanzen, der Anwendung 
Green’scher Funktionen sowie einer dreifachen Laplace-Transformation abgeleitet. Die dimensionslose 
Temperaturverteilung wird als Funktion der maBgeblichen Parameter dargestellt : NTU, Verhaltnis der 
Warmekapazitltsstrome, VerhHltnis der Wlrmeiibergangswiderstlnde. Unter der Annahme einheitlicher 
Anfangsbedingungen und einer sprunghaften Anderung der Eintrittstemperatur des heiBen Stromes wird 
das instationlre Temperaturfeld mit sehr geringer Rechenzeit bestimmt. Fiir einen weiten Bereich der 

Parameter werden Ergebnisse vorgestellt. 

CTYI-IEHgATAII XAPAKTEPHCTHKA TIEPEKPECTHOI-0 TEI-IJIOOPMEHHHKA C 
KOHE9HOti TEITJIOEMKOCTbIQ CTEHKH 

AmioTarmn--Hcurerryerccn crynewaraa xapanrepncI_HEa O~HOXOA~BO~O uepeapecrnoro rermoo6lulee- 
rimia. anyhrepnbre pacnpenenennn rieycranonasrnebn -reMneparypbr B creHre B-H Tennoo6Mema 

H B 060~~ HeChtelIIaHHhM BZEAKOCTJIX ECCJleAyloTCK aHUIHTH¶eCKA C YWTOM KOHe¶HOfi TeIIJlOeMKOCTH 

CTeHKH (T.e. KoHewtofi CKO~OCTE pacnpocrpanernin B03MyueHd). Ypaeae~~a Ba.aanca noaanbnofi 
3~epr~~ peIueHar c IIOMOIWO &HKL& rpmia H rpexnparrroro npeo6pa3onan~n &rrna~a. Bespa%rep 
nbre TeMneparypbt nbrpaerrbr nepea onpe.~eJnnonnre napahferpbt (9~crro eJnnmu nepeeoca, ortioruemre 
ebQ%XTeir, OTHOlueHHeTeDJIOlI~HOCi3 KCO~TEBJIeHHlO). Bnpe~nOnOrremi~ lIOCTOIMCTBaHaSiJbIibIx 

~~OBHiiHcI(a~1[oo6pa3Horo~~TeM~~~TypblHarpeTOii~~~H~BXOAeB~~AeAbHOKO~TK~ 

BpeMX pacc4ETaAO PZiCIIpeAeJteHHe HeJ'CTtlHOBEBlIIe&l TeMUep&Q'pbI. Pe3yJIbTaTZ.l I'IPeACTaBJIeHbl B 


