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Abstract—The step response of a single-pass crossflow heat exchanger is investigated. The two-dimensional
transient temperature distributions in the core wall and in both the unmixed fluids are analytically
determined, considering finite wall heat capacity (i.e. finite propagation speed of disturbances). The
solutions are deduced by the local energy balance equations, resorting to the Green functions and to a
threefold Laplace transform. The dimensionless temperatures are presented in terms of the governing
parameters (number of transfer units, capacity ratios, heat transfer resistance ratio). Assuming constant
initial conditions and entrance temperature of the hot fluid subjected to a sudden step increase, the transient
temperature field is computed with extremely low computational time; the results are plotted for a wide
range of the governing parameters.

INTRODUCTION

MoRE DETAILED and accurate investigations about
the knowledge of the transient fluid temperature
distribution inside heat exchangers are required
nowadays, to provide correct evaluation of thermal
and structural performances. Recently, problems
related to crossflow heat exchangers have increased
their relevance in several advanced industrial appli-
cations (gas turbine regenerators, air—sodium units
in nuclear engineering, ceramic exchangers, chemical
engineering, food processing, cryogenics). Any vari-
ation in the working conditions, either intentional or
accidental, produces a perturbation which propagates
all over the heat exchanger, with important conse-
quences for control devices of fluid regulation. The
time lag associated with the fluid response to per-
turbation can be an interesting parameter for per-
formance considerations and safety requirements.

In the last few years many authors have focused
their interest on searching for analytical solutions
of the crossflow heat exchanger problem. While the
steady-state solution is now well established [1], only
recently the general transient problem has been
tackled with analytical methods. In the past some
authors obtained numerical [2] or analytical solutions
[3], but were restricted to simplified hypotheses such
as large wall capacitance (i.e. infinite velocity of
propagation of any disturbance) and determination
of the mixed mean exit temperatures only. A more
general analytical solution, dealing with different
kinds of perturbation, is given, but still for large wall
capacitance, in refs. [4, 5], where a more exhaustive
discussion about previous literature can be found.
Only very recently an improved solution for the com-

plete mathematical model, taking account of the finite
wall heat capacity, has been worked out in ref. [6],
but solutions are presented only for a delta-like pulse.

This paper is aimed at reporting on the exact ana-
lytical solution for the transient two-dimensional tem-
perature distributions in crossflow heat exchangers,
following a step change in the inlet temperature of the
hot fluid. The availability of these analytical solutions
can reduce the need of scale model testing (sometimes
prohibitively expensive) and constitutes an accurate
benchmark for the validation of computer codes. The
solutions are expressed as integrals of the Green func-
tions, and involve modified Bessel functions. The
influence of the governing physical parameters is
appropriately commented on.

ASSUMPTIONS AND FUNDAMENTAL
EQUATIONS

The theoretical analysis is based on the classical
assumptions adopted for the description of direct
transfer, single-pass crossflow heat exchangers, with
walls separating the two fluid streams (flowing at right
angles). The investigation is carried out according to
the following hypotheses :

(a) both fluids are unmixed (as well known, the
assumption of one fluid mixed introduces a strong
simplification of the problem) ;

(b) all the physical properties and the fluid capacity
rates are constant ;

(c) the exchanger shell or shroud is adiabatic;

(d) the mass velocities at the entrance of the heat
exchanger on each side are constant and change of
flow distribution is neglected ;
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heat transfer surface [m?

¢ specific heat at constant pressure
Dkg™'K™']

E  flow capacitance ratio

Green function

h  heat transfer coefficient [W m~=2 K~}

I() modified Bessel function of the first kind

L exchanger length [m]

&  Laplace operator

m  mass flow rate [kg s~ ]

M mass of the exchanger [kg]

N  dimensionless exchanger length

NTU number of transfer units

R heat transfer resistance ratio

s, p, q Laplace transform variables

t dimensionless time variable

T  dimensionless temperature

u  fluid velocity fm s ']

U(.) Heaviside step function

NOMENCLATURE

V' heat capacity ratio
x, y dimensionless space variables.

Greek symbols
v incomplete gamma function
6(.) Dirac delta function
®  temperature [K]
®, initial temperature of the whole unit [K]
A® step increase in the inlet temperature of the
hot fluid [K]
&, n space variables [m]
T time variable [s]
¢  primary fluid inlet temperature [K].

Subscripts
a  primary (hot) fluid
b secondary (cold) fluid
i general label
w  solid wall.

(e) axial heat conduction is negligible ;

(f) the geometrical configuration is constant
throughout the exchanger ;

(g) the inlet temperature of the unstepped fluid is
constant and equal to the initial temperature of the
whole unit;

(h) the thermal conductances on both sides are
constant and inclusive of wall thermal resistance and
fouling.

This last hypothesis implies that the wall temperatures
are the same on both sides, even if the thermal con-
ductivity of the exchanger core is finite. However, the
heat transfer balance between the fluids is fulfilled,
since the fluid-wall thermal conductances are appro-
priately reduced to account for the core thermal resist-
ance and the fouling factor.

The five dimensionless physical parameters typical
of steady-state heat transfer phenomena in heat ex-
changers are

E = (mc)y/(me),, R = (hA)/(hA),
N; = (hA){(mc),
NTU = {(me)minl1/(hA),+ 1/(hA)]} " (1)

Of course only two of them are independent since

i=a,b

RN, = EN,
N,=ENTU(14+R)/R and N, = (1+R)NTU
ifE<1
N,= NTU(14+R)/R and N, = NTU(1+ R)/E
if E> 1.

For transient phenomena two more parameters take

on a fundamental relevance, since they are associated
to the finite propagation speed of disturbances, namely

V,= L(mc),/Mc,u, i=a,b. )

Moreover, it is suitable to introduce the following
dimensionless variables :

x = {(hA)o/(me) Ly, y = n(hA)/(mc)yLy,

t=1hd)/Mc,, Ti=(0,-0y)/A® i=abw

©)

where the constant A® is some typical or averaged
value of ©,(0,y,)—®,. The governing differential
equations, expressing conservation of energy in a con-
trol volume for wall and fluids, are

aT,
'*a‘t—-*-(l-i-R)Tw: T,+RT,
Ty Tir o1
dx s = A
oT, V, oT,
‘“a“y— ?vgt_—i_Th_ T, G)

for 1>0, 0 <x <N, 0<y< N, Having in mind
here only perturbations induced by a sudden variation
of the primary fluid inlet temperature, the initial and
boundary conditions upon which equations (4) must
be solved will be prescribed as

Ti(xsya0)=0 i=a,b,w
T.00,y.0) = o(y,1)
Ty(x,0,0) = 0. 5

The step response (in which ©,(0, y, £) — 0, is actually
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a constant) is easily reproduced by setting ¢(y,1) = 1.
The temperature fields obtained in this latter important
case will simulate the sudden startup of the exchanger,
and the transient regime taking place before the
steady-state operating conditions are reached.

ANALYTICAL SOLUTION

The linearity of the problem allows the introduction
of the Green’s functions G(x, y, 1), solving the same
set of differential equations, equation (4), as the
sought temperatures T{(x, y, ), but with initial bound-
ary conditions

Gi(x,y,0)=0 i=a,bw
G.(0,5.1) = 6(»)é(0)
Gy(x,0,5) =0. {6)

The Green’s functions G; provide the solution for
the temperature fields induced by any inlet datum by
means of the convolution integrals

Ti(x, v, 1) = j ' dy’J Gx, v, Yo(y—y', t—1)dr.
0 0

M

Taking a threefold Laplace transform with respect to
t,x,y with complex parameters s,p,q, respectively,
and defining

G/ (p.g,9) = £, ,2[G(x.y,0]

=J exp(——st)dzf exp{—px)dx
i 1]

X L exp (—qy)Gix,y,)dy (8)
leads to the set of algebraic equations for G{"

(S+R+ I)G;Iv,(p’ q, S) - G;\”(pa q, S) - RGgl(pa q, S) =0
@+ Vs+ DG (p,q,5) - Gip.g.5) =1
(g+1+Vus/RGY (P, 4,5 —Gip,q.5) =0

®
whose solution is

~

Ga(p.q.9) =g+ 1+ Vis/RGY (p,q.5)

Gl(p,q,8) ={(s+ R+ 1){(g+1+V,s5/R)
—RIGy(p.q,5)

Gy (p,q:8) =(s+ R+ 1)(p+V,s+1)
X (q+ 1+ Vis/R)—(g+ 1+ Vys/R)
—R(p+Vs+D]7".

(10)

The problem is thus reduced to a threefold Laplace
inversion of equations (10). The first inverse {rans-
form with respect to p is simply a matter of residue
calculation and yields

Vi R
7 — e } _wb P
v(x,q,8) = (s+r+1) (q-{— R s+1 s+R+l)

1
X €Xp [—X(Vas+ i— m)

R v, R Y
+"'m<q+'§‘“_§?ﬁ'ﬁ> J ah

Further inversion with respect to the variables g and
s require the formulae 7]

&£, exp (kig)/q] = L2k} "7

# {% exp [+ )/ s1of20kh) "Z/sl}

= L{2(et) 10120k 2} (12)

and some standard properties of the ¥ operator. One
obtains, after a little algebra

G(x 3,0 = U({t—-Vx—Vyy/Ryexp[—x—y
—(1+R) =V x—V,y/R)]
L2t~V x— Vo y I RYCUL2R VA Pt — Vox
=Voy/R'] (132)

where the unit step function U takes the finite propa-
gation speed of disturbances in the exchanger into
account. Analogous steps are in order for i = a,w;
the final results are

G (x,y,8) = exp(—x)8(N(—V,x)+ Ut — V. x)

x exp[~x—(1+ R)(t— Vax)](t_";/ x>‘

x L2xYHt— V) V8GN + Ut~ Vox

~Voy/R) (Rx[y) P exp[—x—p—(1+ Ry (1~ V,x

— Vo IR L 2x "2t~V x— V, y/ R) 2L [2R 212

X (t=Vx—V, ¥R (13b)
G.(x,y,0) = U=V, x)exp[—x— 1+ R) (t—V,x)]

x Lo[2x"2 (e =V, x) 38 (») + U(t— V,x

—VuVIR) (RIY) 2 (t—V,x— Vo y/R) P exp[~x—y

—(1+R) 1=V x~Vyy/ R [2x"*(t =V x

—Voy/RIL[2R 2y 21—V x =V y[R)'P). (130)

The solution to the general problem is now given by
equations (7) and (13). The step response is easily
obtained by putting ¢ =1 in equation (7), and
becomes explicitly, for the hot fluid

Ta(X,.V, t) = CXP(_X)U(t“ Vax) {]

; 12
+J exp{—(l+R)(t’—-Vax)](}7?x—~> Li2x'?

v V,x

@
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x (' — Vax)'/z]dt’—f—(Rx)”zJ‘ exp[—(1+R)
Vx

x (' =V,x))dt Lv* exp{—[1—V,(1+R)/R]y'}

x ¥ VL Rx YA = Vx— Vo y /R VL 2R Yy 12
x (' =V x—V, ¥ /R dy'} (14a)
for the cold fluid

T (x,y. ) = exp(—x)U(t— Va.x)J exp[—(1+R)

steady state

=2.5
0.26+ ¢
0.2+
t=2.1
0.15 u t t {
0 0.5 1 15 vy 2

and G. SPIGA

x (= Vx)dr f}' exp{—[1—V,(1+R)/R]y’}
0

x T[2x"3(t' — V,x— Vo 3’/ R) VI [2R 2y 12
x (' =V x=V,y' R dy (14b)
and for the core wall

T.(x, 3,8y =exp(—x)U(t—V,x)

g {J’ exp[—(1+ R)(t' — V. x)lo[2x (¢ — V,x) 7 dr

+ J exp[—(1+R)(¢ =V, x)1dr J exp{—[1
Vox 0
(b)
0.7 X
y=
Ty b
0.8 Va=% =1
E=R=NTU=1
0.5
0.41

steady state

15

FiG. 1. Fluid temperatures at the outlet sections vs space variable for different values of time when
E=R=NTU=1LV,=V,=1.

0.41

0.351

0.3

t=0.5

0.25+

0.15 t 4 + {
0 0.5 1 1.6 y 2

®) 0.7
AT y=N'b
Ty V=V, =0
0.8 a b
0.5+
0.4

steady state

c 1 il 4 ]

0 ) 1 1.5 x 2

FiG. 2. Fluid temperatures at the outlet sections vs space variable for different values of time when
E=R=NTU=1V,=V,=0.
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—V,(1+R)/R}y'} [ﬁ(t__[/“yi)_l/_"li] /

x Lo[2x"X(¢' = V,x—V,y'|R) I, [2R 2y V2

X (' =V x—Vyy /R dy’} (14¢)

where
y* =min[y, R(t = V,x)/V,]. (15)

Equation (14) constitutes the exact analytical solution
in terms of integrals of modified Bessel functions. The

(a)
0.6+ .
Ta x=Ng steady stat
I Va=V,=100
0.551 a~'b t=300
E=R=NTU=1
0.6+
0.45+ £=2850
/ t=220
0.4f A
V' t=210
0.35+
0.3 t=201
0.26+
0.2+
1=200.1
0.15 ¥ } ¥ =
0 0.5 1 1.6 y 2

meaning of y* in connection with propagations in the
y-direction at a speed R/V, has been discussed already
in ref. [6]. Propagation in the x-direction at a speed
of 1/V, is apparent from equations (14) themselves,
where temperatures depend on time only via the com-
bination ¢ — ¥V, x. The double integration required by
the explicit solutions (14) does not present technical
problems because the integrands are bounded con-
tinuous functions of all variables.

RESULTS

The numerical results have been obtained on a
Toshiba 3100e personal computer, working in double

(b)
T %
b V. =
V,=%,=100
E=R=NTU=1

steady state

1 1.5 x 2

FiG. 3. Fluid temperatures at the outlet sections vs space variable for different values of time when
E=R=NTU=1,V,=V,=100.

steady state

0.3
t=2.5
0.25¢
0.2+
t=2.1
0.15 + —t + —4
0 0.5 1 1.5 y @2

(b)

steady state

t=2.1
0 0.5 1 15 vy 2

FiG. 4. T, at x = N, vs y for different values of time when E=R=NTU=V,=1: (a) V,=0.01;
(b) ¥, = 10.
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Ty y=N,
0.8+ V=0.01
E=R=NTU=¥, =1
0.5+
0.4+ steady state
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(b)

y=Nyp,
V,=10
E=R=NTU=V, =1

steady state

FiG. 5. T, at y = N, vs x for different values of time when E=R=NTU=¥,=1: (a) V,=0.01;
{b) ¥, = 10.

precision. The integration involved in equations (14)
has been accomplished numerically by the IMSL
routines DQDAG and DTWODQ (using a globally
adaptive scheme based on Gauss—Kronrod rules, with
7-15 points and a relative accuracy of 1077 [8]). The
results are plotted in some graphs; every graph con-
tains several curves, each of them is made of 51 points.
In spite of the double precision, the high accuracy and
the numerous temperature values required, the CPU
time for every figure is of the order of some hours on
a very simple personal computer.

Figures 1-5 give a few examples of the several cases
that have been run. As expected, the limiting results
for V,, ¥V, — 0, and for t = o0, reproduce exactly those
relevant to vanishing heat capacity ratios [5], and
to steady-state operating conditions [1], respectively.
Since the effects of heat capacity ratios seem to be
the most important in the present time-dependent
context, only their variations will be discussed in this
paper, whereas the other physical parameters, i.e. E,
R and NTU, will be kept constant and equal to unity.
This implies in particuar N, = N, = 2 for the dimen-
sionless lengths. The perturbation produced by the
step entry reaches the exit section of the hot fluid at a
time V,N, and then temperature increases, more
slowly near the section y = 0 where the cold fluid
enters, and approaches the steady-state profile. The
unstepped fluid increases its temperature continu-
ously, more rapidly near the section x = 0, where the
hot fluid enters; the wave front propagates all over
the x-axis, reaching the section x = ¢/V, at time 1.
Figure 1, where V, = V, = 1,shows T, vs yatx = N,
and analogously 7}, vs x at y = N,, for different times.
This will be used as a reference case; notice the
approach towards equilibrium when ¢ increases. In
Fig. 2 the same temperature profiles are plotted in the
limiting case V, = ¥V, = 0; now the infinite propa-

gation speed of disturbances makes the approach to
equilibrium faster and smoother. A comparison can
be done with the step response dealt with in ref. [5];
the numerical values related in Fig. 2 are coincident
with those presented in Figs. 1 and 2 of ref. 5], for
NTU = 1. The opposite effect of a very slow propa-
gation speed can be seen in Fig. 3, which is arranged
like the previous ones, but with ¥, = V,, = 100. Here
the final steady state is approached very slowly
(roughly speaking, there is a factor of 100 with respect
to Fig. 1), and in a quite non-uniform way along the
considered sections. In Fig. 4 all parameters are the
same as in Fig. 1, except V;, which is taken equal to
either 0.01 or 10. Only the propagation speed along
the y-axis has been changed. This can be seen by
comparison of the T, profiles to the one of Fig. 1(a);
when variations travel faster in the y-direction, 7,
increases at about the same rate for y close to 0 as for
v close to N, whilst in the opposite case the tail at
large y follows with considerable delay the increase at
y = 0. Figure 5 shows finally the temperature T, with
either ¥, = 0.01 or 10, the other parameters being the
same as in Fig. 1, so that only the speed of propagation
in the x-direction is different. With reference to Fig.
1(b), the comment is, mutatis mutandis, the same as
for Fig. 4. Notice in particular the presence of well-
defined wavefronts for the values of 7 shown in the
case of Fig. 5(b).

The main contribution of this paper consists in
making available the exact two-dimensional tem-
perature profiles in the single-pass crossflow heat
exchanger. As its implication, mean temperatures and
performance can be ecasily estimated, giving the
designer useful information about surface area, con-
figuration, and working parameters. Another mean-
ingful practical significance and application of the
solution resides in the possibility of carrying out a
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very detailed stress analysis, mainly concerning either
the differential thermal expansion along both x- and
y-axes, or the related thermal stresses.
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REPONSE A UN ECHELON POUR UN ECHANGEUR THERMIQUE CROISE AVEC
CAPACITANCE FINIE DE PAROI

Résumé—On étudie la réponse a un échelon pour un échangeur thermique croisé a une seule passe. Les
distributions variables et bidimensionnelles de température de la paroi et des fluides non mélangés sont
déterminées analytiquement en considérant une capacité thermique finie de la paroi (c’est-a-dire une vitesse
finie de propagation des perturbations). Les solutions sont déduites des équations de bilan local d’énergie
a l'aide des fonctions de Green et d’une transformation de Laplace. Les températures adimensionnelles
sont présentées en fonction des paramétres (nombre d’unités de transfert, rapport des capacités, rapport
des résistances thermiques). En supposant des conditions initiales constantes et une température d’entrée
du fluide chaud soumise & un accroissement brusque en échelon, le champ de température variable est
calculé avec un temps de calcul extrémement faible ; les résultats sont donnés pour un large domaine des
parameétres actifs.

SPRUNGANTWORT EINES KREUZSTRQM-WARMEUBERTRAGERS MIT
ENDLICHER WARMEKAPAZITAT DER WANDUNGEN

Zusammenfassung—Die Sprungantwort eines eingingigen Kreuzstrom-Wairmeiibertragers wird unter-
sucht. Die zweidimensionale instationdre Temperaturverteilung in der Wand und in beiden Fluidstromen,
in denen keine Vermischung zugelassen wird, werden analytisch bestimmt. Dies geschieht unter Beriick-
sichtigung der Wirmekapazitit der Wand, was einer endlichen Ausbreitungsgeschwindigkeit von
Storungen entspricht. Die Lésungen werden mit Hilfe von értlichen Energiebilanzen, der Anwendung
Green’scher Funktionen sowie einer dreifachen Laplace-Transformation abgeleitet. Die dimensionslose
Temperaturverteilung wird als Funktion der maBgeblichen Parameter dargestellt: NTU, Verhiltnis der
Wirmekapazititsstrome, Verhiltnis der Wirmeiibergangswiderstinde. Unter der Annahme einheitlicher
Anfangsbedingungen und einer sprunghaften Anderung der Eintrittstemperatur des heiBen Stromes wird
das instationdre Temperaturfeld mit sehr geringer Rechenzeit bestimmt. Fiir einen weiten Bereich der
Parameter werden Ergebnisse vorgestelit.

CTYNNIEHYATAS XAPAKTEPUCTHUKA MEPEKPECTHOI'O TEIIJIOOBMEHHHMKA C
KOHEYHOW TEIIJIOEMKOCTBIO CTEHKH

Amoraums—HccnenyeTcs CTyneHYaTas XapakTEpHCTHKA OJHOXOJOBOTO HEPEKPECTHOrO TEILTOOOMEH-
HEKA. JIByMepHbIE pacTpeic/iCHAs HEYCTAHOBHBIIEHCA TEMIEpATyphl B CTEHKE BHYTPH TEILIOOGMEHHHKA
A B 060OHX HECMCIIAHHBIX XHIOKOCTAX MCCICAYIOTCS aHAJIHTHYECKH C YYETOM KOHEYHOH TEII0eMKOCTH
CTEHKH (T.€. KOHEYHOH CKOPDOCTH DacHpOCTPaHEHHs BO3MyLICHMH). YpaBHeHHs OajlaHca JIOKaJIbHOR
JHEPrHH pellleHHl ¢ moMolubio GyHxumii I'pura u TpexxpatHoro npeoGpa3sopanus Jlawiaca. Bespasmep-
Hble TEMIICPATYPhl BBIPAXKEHBl Y€PE3 ONPEACIAIOIINE TapaMeTpPhl (1HCIO €AMHMIL IEPEHOCa, OTHOIICHHE
E€MKOCT! eﬁ, OTHOLICHHC TeIUIONEPEHOCA K coupomnnel-uno). B NpEANnOJIOKEHHNA NMOCTOAHCTBA HAYAJIbHAIX
YCNIOBHH M CKa4k006Pa3HOro pocTa TeMIEepaTyphl HArPeTo# KHUAKOCTH HA BXOAE B NpedeNbHO KOPOTKOE
BpeMsA PAcCIMTaHO pacmpefelicHHE HEYCTaHOBHBHIEHCS TemmepaTypsl. Pe3ynbTaThl mpencraBieHsl B
puie rpaduka AJA IIHPOKOTO NHANA30Ha ONMpeae AIOIIMX IaPAMETPOB.



